The timber will be SC3, having the following wet exposure grade stresses obtained by multiplying the dry stresses by the relevant K_2 factor from Table 2.3:

Bending stress parallel to grain $\sigma_{m,g,par} = 4.24 \text{ N/mm}^2$ Shear stress parallel to grain $r_g = 0.603 \text{ N/mm}^2$ Mean modulus of elasticity $E_{mean} = 7040 \text{ N/mm}^2$

The following modification factors will apply:

Wet exposure geometrical factor K_1 from Table 2.5:

For cross-sectional area: 1.04 For section modulus: 1.06 For second moment of area: 1.08

Load duration factor K_3 for 1 week (from Table 2.11) = 1.4

Load sharing factor $K_8 = 1.1$

Depth factor K_7 as applicable to size

Maximum depth to breadth ratio = 5

Design a typical support joist spanning 2.5 m at 450 mm centres.

Loading

Dead load: concrete $24 \times 0.125 = 3.0$ timber sheeting = 0.1 timber joists = $\frac{0.12}{3.22 \text{ kN/m}^2}$

Imposed load: 1.5 kN/m²

Combined load: dead 3.22 imposed $\frac{1.50}{4.72 \text{ kN/m}^2}$

UDL per joist = $4.72 \times 2.5 \times 0.45 = 5.31 \text{ kN}$

Bending

$$M = \frac{WL}{8} = \frac{5.31 \times 2.5}{8} = 1.66 \text{ kN m} = 1.66 \times 10^6 \text{ N mm}$$

Wet exposure grade bending stress $\sigma_{m,g,par} = 4.24 \text{ N/mm}^2$

 K_1 wet exposure section modulus factor = 1.06

 K_3 load duration factor (1 week) from Table 2.11 = 1.4

 K_8 load sharing factor = 1.1

 K_7 depth factor is unknown at this stage

Approximate Z_{xx} required

$$= \frac{M}{\sigma_{\rm m,g,par} K_1 K_3 K_8} = \frac{1.66 \times 10^6}{4.24 \times 1.06 \times 1.4 \times 1.1} = 239\,837\,{\rm mm}^3 = 240 \times 10^3\,{\rm mm}^3$$

Maximum depth to breadth ratio for lateral stability is 5

Calculate the approximate I_{xx} required to satisfy bending deflection alone. The permissible deflection is the lesser of $0.003 \times \text{span} = 0.003 \times 2500 = 7.5 \,\text{mm}$ or 3 mm, so will be 3 mm. From $\delta_{\text{m}} = (5/384)(WL^3/EI)$ and $\delta_{\text{p}} = 3 \,\text{mm}$, Approximate I_{xx} required

$$= \frac{5}{384} \times \frac{5.31 \times 10^3 \times 2500^3}{7040 \times 3} = 51151622 \,\mathrm{mm}^4 = 51.2 \times 10^6 \,\mathrm{mm}^4$$

This can be divided by the wet exposure K_1 factor to give the second moment of area:

Final
$$I_{xx}$$
 required = $\frac{51.2 \times 10^6}{1.08}$ = 47.4×10^6 mm

From Table 2.4, for a 63 mm \times 225 mm sawn joist $Z_{xx} = 532 \times 10^3$ mm³ and $I_{xx} = 59.8 \times 10^6$ mm⁴.

Deflection

Actual deflection
$$\delta_{\rm a} = \delta_{\rm m} + \delta_{\rm v} = \frac{5}{384} \frac{WL^3}{EI} + \frac{19.2M}{AE}$$

The relevant wet exposure K_1 factors should be applied to the area and I values in this expression to give

$$\delta_{a} = \frac{5}{384} \frac{WL^{3}}{EIK_{1}} + \frac{19.2M}{K_{1}AE}$$

$$= \frac{5}{384} \times \frac{5.31 \times 10^{3} \times 2500^{3}}{7040 \times 59.8 \times 10^{6} \times 1.08} + \frac{19.2 \times 1.66 \times 10^{6}}{1.04 \times 14.2 \times 10^{3} \times 7040}$$

$$= 2.38 + 0.31 = 2.69 \text{ mm} < 3 \text{ mm}$$

This section is adequate.

Shear unnotched

Maximum shear
$$F_v = \frac{\text{UDL}}{2} = \frac{5.31}{2} = 2.66 \text{ kN} = 2.66 \times 10^3 \text{ N}$$

Wet exposure $r_g = 0.603 \text{ N/mm}^2$

$$r_{\text{adm}} = r_{\text{g}} K_3 K_8 = 0.603 \times 1.4 \times 1.1 = 0.929 \text{ N/mm}^2$$

For falsework the r_{adm} may be increased by a further factor of 1.5 in accordance with BS 5975:

$$r_{\text{adm}} = 0.929 \times 1.5 = 1.39 \text{ N/mm}^2$$

 $r_{\text{a}} = \frac{3}{2} \frac{F_{\text{v}}}{K_{\text{+}} A} = \frac{3}{2} \times \frac{2.66 \times 10^3}{1.04 \times 14.2 \times 10^3} = 0.27 \text{ N/mm}^3 < 1.39 \text{ N/mm}^2$

Conclusion

Use $63 \,\mathrm{mm} \times 225 \,\mathrm{mm}$ SC3 sawn joists.